Two Types of Etiological Mutation in the Limb-Specific Enhancer of Shh

نویسندگان

  • Takanori Amano
  • Tomoko Sagai
  • Ryohei Seki
  • Toshihiko Shiroishi
چکیده

An enhancer named MFCS1 regulates Sonic hedgehog (Shh) expression in the posterior mesenchyme of limb buds. Several mutations in MFCS1 induce ectopic Shh expression in the anterior limb bud, and these result in preaxial polydactyly (PPD). However, the molecular basis of ectopic Shh expression remains elusive, although some mutations are known to disrupt the negative regulation of Shh expression in the anterior limb bud. Here, we analyzed the molecular mechanism of ectopic Shh expression in PPD including in a mouse mutation-hemimelic extra toes (Hx)-and in other MFCS1 mutations in different species. First, we generated transgenic mouse lines with a LacZ reporter cassette flanked with tandem repeats of 40 bp MFCS1 fragments harboring a mutation. The transgenic mouse line with the Hx-type fragment showed reporter expression exclusively in the anterior, but not in the posterior margins of limb buds. In contrast, no specific LacZ expression was observed in lines carrying the MFCS1 fragment with other mutations. Yeast one-hybrid assays revealed that the msh-like homeodomain protein, MSX1, bound specifically to the Hx sequence of MFCS1. Thus, PPD caused by mutations in MFCS1 has two major types of molecular etiology: loss of a cis-motif for negative regulation of Shh, and acquisition of a new cis-motif binding to a preexisting transcription factor, as represented by the Hx mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct functional consequences of ZRS enhancer mutation combine with secondary long range SHH signalling effects to cause preaxial polydactyly

Sonic hedgehog (SHH) plays a central role in patterning numerous embryonic tissues including, classically, the developing limb bud where it controls digit number and identity. This study utilises the polydactylous Silkie (Slk) chicken breed, which carries a mutation in the long range limb-specific regulatory element of SHH, the ZRS. Using allele specific SHH expression analysis combined with qu...

متن کامل

Identification of spontaneous mutations within the long-range limb-specific Sonic hedgehog enhancer (ZRS) that alter Sonic hedgehog expression in the chicken limb mutants oligozeugodactyly and silkie breed.

The evolutionarily conserved, non-coding ~800-base-pair (bp) zone of polarizing activity (ZPA) regulatory sequence (ZRS) controls Shh expression in the posterior limb. We report that the chicken mutant oligozeugodactyly (ozd), which lacks limb Shh expression, has a large deletion within the ZRS. Furthermore, the preaxial polydactylous, Silkie Breed chicken, which develops ectopic anterior limb ...

متن کامل

Shh and ZRS enhancer colocalisation is specific to the zone of polarising activity

Limb-specific Shh expression is regulated by the (∼1 Mb distant) ZRS enhancer. In the mouse, limb bud-restricted spatiotemporal Shh expression occurs from ∼E10 to E11.5 at the distal posterior margin and is essential for correct autopod formation. Here, we have analysed the higher-order chromatin conformation of Shh in expressing and non-expressing tissues, both by fluorescence in situ hybridis...

متن کامل

Shh and ZRS enhancer co-localisation is specific to the zone of polarizing activity

CC-BY-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was. Abstract Limb-specific Shh expression is regulated by the (~1 Mb distant) ZRS enhancer. In the mouse, limb bud restricted spatiotemporal expression of Shh occurs from ~E10-E11.5 at the distal posterior margin and is essential for correct aut...

متن کامل

Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers

Limb reduction and loss are hallmarks of snake evolution. Although advanced snakes are completely limbless, basal and intermediate snakes retain pelvic girdles and small rudiments of the femur. Moreover, legs may have re-emerged in extinct snake lineages [1-5], suggesting that the mechanisms of limb development were not completely lost in snakes. Here we report that hindlimb development arrests...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017